Relativistic Coulomb problem: Analytic upper bounds on energy levels.

نویسندگان

  • Lucha
  • Schöberl
چکیده

The spinless relativistic Coulomb problem is the bound-state problem for the spinless Salpeter equation (a standard approximation to the Bethe–Salpeter formalism as well as the most simple generalization of the nonrelativistic Schrödinger formalism towards incorporation of relativistic effects) with the Coulomb interaction potential (the static limit of the exchange of some massless bosons, as present in unbroken gauge theories). The nonlocal nature of the Hamiltonian encountered here, however, renders extremely difficult to obtain rigorous analytic statements on the corresponding solutions. In view of this rather unsatisfactory state of affairs, we derive (sets of) analytic upper bounds on the involved energy eigenvalues. PACS: 03.65.Pm; 03.65.Ge; 11.10.St; 12.39.Pn

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relativistic Coulomb Problem: Energy Levels at the Critical Coupling Constant Analytically

The Hamiltonian of the spinless relativistic Coulomb problem combines the standard Coulomb interaction potential with the square-root operator of relativistic kinematics. This Hamiltonian is known to be bounded from below up to some well-defined critical coupling constant. At this critical coupling constant, however, the differences between all analytically obtainable upper bounds on the corres...

متن کامل

Comment on “analytic Solution of the Relativistic Coulomb Problem for a Spinless Salpeter Equation”

We demonstrate that the analytic solution for the set of energy eigenvalues of the semi-relativistic Coulomb problem reported by B. and L. Durand is in clear conflict with an upper bound on the ground-state energy level derived by some straightforward variational procedure.

متن کامل

The One-dimensional Spinless Relativistic Coulomb Problem

Motivated by a recent analysis which presents explicitly the general solution, we consider the eigenvalue problem of the spinless Salpeter equation with a (“hard-core amended”) Coulomb interaction potential in one dimension. We prove the existence of a critical coupling constant (which contradicts the assertions of the previous analysis) and give analytic upper bounds on the energy eigenvalues....

متن کامل

A Variational Approach to the Spinless Relativistic Coulomb Problem

By application of a straightforward variational procedure we derive a simple, analytic upper bound on the ground-state energy eigenvalue of a semirelativistic Hamiltonian for (one or two) spinless particles which experience some Coulomb-type interaction.

متن کامل

Spinless Salpeter Equation: Analytic Results

The spinless Salpeter equation is the combination of relativistic kinematics with some static interaction potential. The nonlocal nature of the Hamiltonian resulting from this approximation renders difficult to obtain rigorous analytic statements on resulting solutions. In view of this unsatisfactory state of affairs, we calculate analytic upper bounds on the involved energy levels, and, for th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. A, Atomic, molecular, and optical physics

دوره 54 5  شماره 

صفحات  -

تاریخ انتشار 1996